
7.4 Volumes of Cones

Essential Question How can you remember the formulas for

surface area and volume?

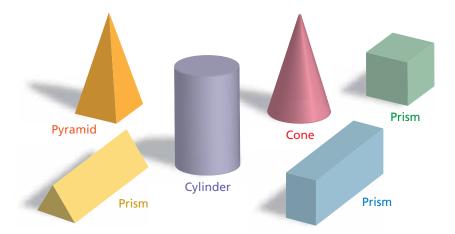
You discovered that the volume of a pyramid is one-third the volume of a prism that has the same base and same height. You can use a similar activity to discover that the volume of a cone is one-third the volume of a cylinder that has the same base and height.

Volume of a Cone = $\frac{1}{3}$ (Area of Base) × (Height)

ACTIVITY: Summarizing Volume Formulas

Work with a partner. You can remember the volume formulas for all of the solids shown with just two concepts.

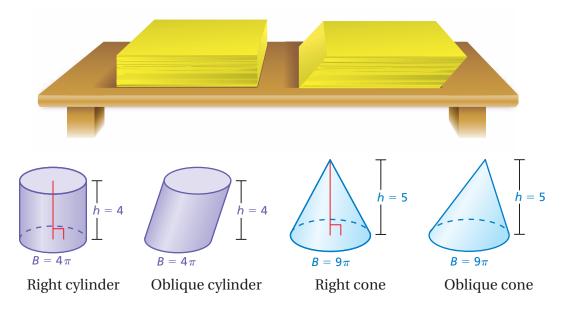
Volumes of Prisms and Cylinders


Volume = $(Area of Base) \times (Height)$

Volumes of Pyramids and Cones

Volume = $\frac{1}{3}$

(Volume of Prism or Cylinder with same base and height)


Make a list of all the formulas you need to remember to find the area of a base. Talk about strategies for remembering these formulas.

1


ACTIVITY: Volumes of Oblique Solids

Work with a partner. Think of a stack of paper. If you adjust the stack so that the sides are oblique (slanted), do you change the volume of the stack? If the volume of the stack does not change, then the formulas for volumes of right solids also apply to oblique solids.

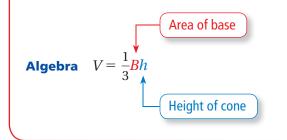
ACTIVITY: Summarizing Surface Area Formulas

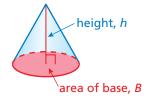
Work with a partner. Make a list of the formulas for surface area that you studied in Chapter 6. Organize these formulas in a way similar to what you did in Activity 1.

What Is Your Answer?

4. IN YOUR OWN WORDS How can you remember the formulas for surface area and volume? Write all of the surface area and volume formulas on a summary sheet. Make the list short so that you do not have to memorize many formulas.

Use what you learned about the volumes of cones to complete Exercises 4–6 on page 320.

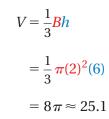

7.4 Lesson



Volume of a Cone

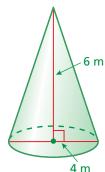
Words The volume *V* of a cone is one-third the product of the area of the base and the height of the cone.

EXAMPLE


1

2

Finding the Volume of a Cone


Study Tip Because $B = \pi r^2$, you can use $V = \frac{1}{3}\pi r^2 h$ to find the volume of a cone.

Find the volume of the cone. Round your answer to the nearest tenth. The diameter is 4 meters. So, the radius is 2 meters.

Write formula. Substitute.

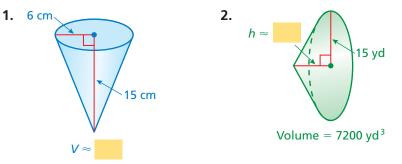
Simplify.

• The volume is about 25.1 cubic meters.

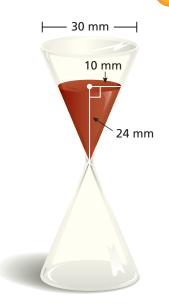
EXAMPLE

Finding the Height of a Cone

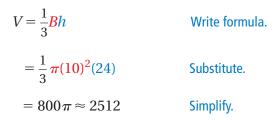
Find the height of the cone. Round your answer to the nearest tenth.


$V = \frac{1}{3}Bh$	Write formula.	h
$956 = \frac{1}{3}\pi(9)^2(h)$	Substitute.	
$956 = 27 \pi h$	Simplify.	9 ft
$11.3 \approx h$	Divide each side by 27π .	Volume = 956 ft^3

• The height is about 11.3 feet.



Find the volume V or height h of the cone. Round your answer to the nearest tenth.



EXAMPLE 3 Real-Life Application

You must answer a trivia question before the sand in the timer falls to the bottom. The sand falls at a rate of 50 cubic millimeters per second. How much time do you have to answer the question?

Use the formula for the volume of a cone to find the volume of the sand in the timer.

The volume of the sand is about 2512 cubic millimeters. To find the amount of time you have to answer the question, multiply the volume by the rate at which the sand falls.

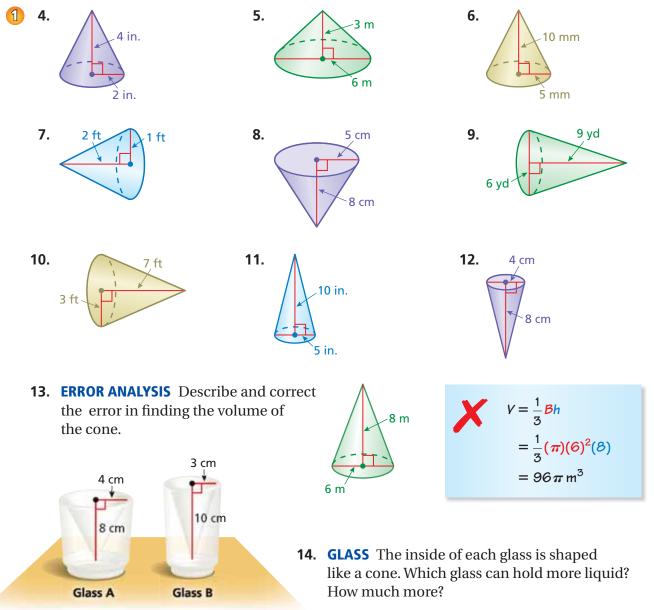
$$2512 \,\mathrm{mm}^3 \times \frac{1 \,\mathrm{sec}}{50 \,\mathrm{mm}^3} = 50.24 \,\mathrm{sec}$$

You have about 50 seconds to answer the question.

On Your Own

- **3. WHAT IF?** In Example 3, the sand falls at a rate of 60 cubic millimeters per second. How much time do you have to answer the question?
- **4. WHAT IF?** In Example 3, the height of the sand in the timer is 12 millimeters and the radius is 5 millimeters. How much time do you have to answer the question?

7.4 Exercises



- **1. VOCABULARY** Describe the height of a cone.
- **2. WRITING** Compare and contrast the formulas for the volume of a pyramid and the volume of a cone.
- **3. REASONING** You know the volume of a cylinder. How can you find the volume of a cone with the same base and height?

Practice and Problem Solving

Find the volume of the cone. Round your answer to the nearest tenth.

